Publications 2021

Below you find a list of recent publications from researchers associated with the CCC. We update this list twice a year (June, December)

        1. M. Beukema, K. Ishisono, J. de Waard, M. M. Faas, P. de Vos and K. Kitaguchi. Pectin limits epithelial barrier disruption by Citrobacter rodentium through anti-microbial effects Food Funct. 12, 881 (2021).
          (Click here for the publication)
        2. C.E.Klostermann, P.L.Buwaldaa, H.Leemhuis, Vos, H.A.Schols, J.H.Bitter Digestibility of resistant starch type 3 is affected by crystal type, molecular weight and molecular weight distribution Carbohydr. Polym. 265 118069 (2021).
          (Click here for the publication)
        3. Ellen Wilms, Ran An, Agnieszka Smolinska, Yala Stevens, Antje R. Weseler, Montserrat Elizalde, Marie-José Drittij, Athanasia Ioannou, Frederik J. van Schooten, Hauke Smidt, Ad A.M. Masclee, Erwin G.Zoetendal, Daisy M.A.E.Jonkers Galacto-oligosaccharides supplementation in prefrail older and healthy adults increased faecal bifidobacteria, but did not impact immune function and oxidative stress Clinical Nutrition 40(5) 3019-3031 (2021).
          (Click here for the publication)
        4. Melany Rios-Morales; van Trijp MP; Christiane Rösch; Ran An; Theo Boer; Albert Gerding; Naomi de Ruiter; Martijn Koehorst; M. Rebecca Heiner-Fokkema; Henk A. Schols; Dirk-Jan Reijngoud; Guido J.E.J. Hooiveld; Barbara Bakker A toolbox for the comprehensive analysis of small volume human intestinal samples that can be used with gastrointestinal sampling capsules Scientific Reports 11, 8133 (2021).
          (Click here for the publication)
        5. Mara P H van Trijp, Ellen Wilms, Melany Ríos-Morales, Ad Am Masclee, Robert Jan Brummer, Ben Jm Witteman, Freddy J Troost, Guido Jej Hooiveld Using naso- and oro-intestinal catheters in physiological research for intestinal delivery and sampling in vivo: practical and technical aspects to be considered. Am J Clin Nutr 0:1–19 (2021).
          (Click here for the publication)
        6. Mara P H van Trijp, Sophie Schutte, Diederik Esser, Suzan Wopereis, Femke P M Hoevenaars, Guido J E J Hooiveld, Lydia A Afman Minor Changes in the Composition and Function of the Gut Microbiota During a 12-Week Whole Grain Wheat or Refined Wheat Intervention Correlate with Liver Fat in Overweight and Obese Adults The Journal of Nutrition 151(3), 491–502, (2021).
          (Click here for the publication)
        7. Barnett, David JM, Ilja CW Arts, and John Penders. “microViz: an R package for microbiome data visualization and statistics.” Journal of Open Source Software 6, no. 63 (2021): 3201.
        8. An, Ran, Ellen Wilms, Madelon J. Logtenberg, Mara PH van Trijp, Henk A. Schols, Ad AM Masclee, Hauke Smidt, Daisy MAE Jonkers, and Erwin G. Zoetendal. “In vitro metabolic capacity of carbohydrate degradation by intestinal microbiota of adults and pre-frail elderly.” ISME Communications 1, no. 1 (2021): 1-12.
        9. Akkerman, Renate, Madelon J. Logtenberg, Martin Beukema, Bart J. De Haan, Marijke M. Faas, Erwin G. Zoetendal, Henk A. Schols, and Paul De Vos. “Chicory inulin enhances fermentation of 2′-fucosyllactose by infant fecal microbiota and differentially influences immature dendritic cell and T-cell cytokine responses under normal and Th2-polarizing conditions.” Food & function 12, no. 19 (2021): 9018-9029.
        10. Ferrari, Michela, Lisanne Hameleers, Marc CA Stuart, Marjolein MP Oerlemans, Paul de Vos, Edita Jurak, and Marthe TC Walvoort. “Efficient isolation of membrane-associated exopolysaccharides of four commercial bifidobacterial strains.” Carbohydrate Polymers (2021): 118913.
        11. Gu, F., Kate, G. A. t., Arts, I. C. W., Penders, J., Thijs, C., Lindner, C., Schols, H. A. (2021). Combining HPAEC-PAD, PGC-LC−MS, and 1D 1H NMR to Investigate Metabolic Fates of Human Milk Oligosaccharides in 1‑Month-Old Infants: a Pilot Study. Agricultural and Food Chemistry, 69, 6495−6509. doi:10.1021/acs.jafc.0c07446
        12. Gu, F., Wang, S., Beijers, R., Weerth, C. d., & Schols, H. A. (2021). Structure-Specific and Individual-Dependent Metabolization of Human Milk Oligosaccharides in Infants: A Longitudinal Birth Cohort Study. Agricultural and Food Chemistry, 69(22), 6186–6199. doi:10.1021/acs.jafc.0c07484
        13. Klostermann, C. E., P. H. van der Zaal, H. A. Schols, P. L. Buwalda, and J. H. Bitter. “The influence of α-1, 4-glucan substrates on 4, 6-α-d-glucanotransferase reaction dynamics during isomalto/malto-polysaccharide synthesis.” International Journal of Biological Macromolecules 181 (2021): 762-768.
        14. Beukema, Martin, Renate Akkerman, Éva Jermendi, Taco Koster, Anne Laskewitz, Chunli Kong, Henk A. Schols, Marijke M. Faas, and Paul de Vos. “Pectins that Structurally Differ in the Distribution of Methyl‐Esters Attenuate Citrobacter rodentium‐Induced Colitis.” Molecular nutrition & food research 65, no. 19 (2021): 2100346.
        15. Beukema, Martin, Éva Jermendi, Taco Koster, Kohji Kitaguchi, Bart J. de Haan, Marco Alexander van den Berg, Marijke M. Faas, Henk A. Schols, and Paul de Vos. “Attenuation of Doxorubicin‐Induced Small Intestinal Mucositis by Pectins is Dependent on Pectin’s Methyl‐Ester Number and Distribution.” Molecular nutrition & food research 65, no. 18 (2021): 2100222.
        16. Cai, Yang, Myrthe S. Gilbert, Walter JJ Gerrits, Gert Folkerts, and Saskia Braber. “Galacto-oligosaccharides alleviate lung inflammation by inhibiting NLRP3 inflammasome activation in vivo and in vitro.” Journal of Advanced Research (2021).
        17. Gaenssle, Aline Lucie Odette, Hilda Hubertha Maria Bax, and Edita Jurak. “GH13 Glycogen branching enzymes can adapt the substrate chain length towards their preferences via α-1, 4-transglycosylation.” Enzyme and microbial technology 150 (2021): 109882.
        18. Logtenberg, Madelon J., Renate Akkerman, Rosan Hobe, Kristel MH Donners, Sander S. Van Leeuwen, Gerben DA Hermes, Bart J. de Haan et al. “Structure‐Specific Fermentation of Galacto‐Oligosaccharides, Isomalto‐Oligosaccharides and Isomalto/Malto‐Polysaccharides by Infant Fecal Microbiota and Impact on Dendritic Cell Cytokine Responses.” Molecular Nutrition & Food Research (2021): 2001077.
        19. Cheng, Lianghui, Chunli Kong, Wenjia Wang, Andre Groeneveld, Arjen Nauta, Matthew R. Groves, Mensiena BG Kiewiet, and Paul de Vos. “The Human Milk Oligosaccharides 3‐FL, Lacto‐N‐Neotetraose, and LDFT Attenuate Tumor Necrosis Factor‐α Induced Inflammation in Fetal Intestinal Epithelial Cells In Vitro through Shedding or Interacting with Tumor Necrosis Factor Receptor 1.” Molecular Nutrition & Food Research 65, no. 7 (2021): 2000425.
        20. Cai, Yang, Myrthe S. Gilbert, Walter JJ Gerrits, Gert Folkerts, and Saskia Braber. “Anti-inflammatory properties of fructo-oligosaccharides in a calf lung infection model and in mannheimia haemolytica-infected airway epithelial cells.” Nutrients 13, no. 10 (2021): 3514.
        21. Oost, Miriam J., Francisca C. Velkers, Aletta D. Kraneveld, and Koen Venema. “Development of the in vitro Cecal Chicken ALIMEntary tRact mOdel-2 to Study Microbiota Composition and Function.” Frontiers in microbiology 12 (2021).

Publications 2020

  1. Akkerman, R. et al. Endo-1, 3 (4)-β-Glucanase-Treatment of Oat β-Glucan Enhances Fermentability by Infant Fecal Microbiota, Stimulates Dectin-1 Activation and Attenuates Inflammatory Responses in Immature Dendritic Cells. Nutrients 12, 1660 (2020).
  2. Beukema, M. et al. The impact of the level and distribution of methyl-esters of pectins on TLR2-1 dependent anti-inflammatory responses. Carbohydr. Polym. 251, 117093 (2020).
  3. Beukema, M., Faas, M. M. & de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Exp. Mol. Med. 52, 1364–1376 (2020).
  4. Beukema, M., Jermendi, É., Schols, H. A. & de Vos, P. The influence of calcium on pectin’s impact on TLR2 signalling. Food Funct. 11, 7427–7432 (2020).
  5. Borewicz, K. et al. The association between breastmilk oligosaccharides and faecal microbiota in healthy breastfed infants at two, six, and twelve weeks of age. Sci. Rep. 10, 1–12 (2020).
  6. Cai, Y., Folkerts, J., Folkerts, G., Maurer, M. & Braber, S. Microbiota-dependent and-independent effects of dietary fibre on human health. Br. J. Pharmacol. 177, 1363–1381 (2020).
  7. Cai, Y., Varasteh, S., van Putten, J. P. M., Folkerts, G. & Braber, S. Mannheimia haemolytica and lipopolysaccharide induce airway epithelial inflammatory responses in an extensively developed ex vivo calf model. Sci. Rep. 10, 1–14 (2020).
  8. Cheng, L. et al. Effects of Different Human Milk Oligosaccharides on Growth of Bifidobacteria in Monoculture and Co-culture With Faecalibacterium prausnitzii. Front. Microbiol. 11, (2020).
  9. Cheng, L., Kong, C., Walvoort, M. T. C., Faas, M. M. & de Vos, P. Human milk oligosaccharides differently modulate goblet cells under homeostatic, proinflammatory conditions and ER stress. Mol. Nutr. Food Res. 64, 1900976 (2020).
  10. Fassarella, M. et al. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut (2020).
  11. Klaudyna, B. et al. The association between breastmilk oligosaccharides and faecal microbiota in healthy breastfed infants at two, six, and twelve weeks of age. Sci. Reports (Nature Publ. Group) 10, (2020).
  12. Kong, C. et al. Human Milk Oligosaccharides Mediate the Crosstalk Between Intestinal Epithelial Caco-2 Cells and Lactobacillus PlantarumWCFS1in an In Vitro Model with Intestinal Peristaltic Shear Force. J. Nutr. (2020).
  13. Logtenberg, M. J. et al. Fermentation of Chicory Fructo-oligosaccharides and Native Inulin by Infant Faecal Microbiota Attenuates Pro-inflammatory Responses in Immature Dendritic Cells in an Infant-age Dependent and Fructan-Specific Way. Mol. Nutr. Food Res. 2000068 (2020).
  14. Logtenberg, M. J. et al. Touching the High Complexity of Prebiotic Vivinal Galacto-oligosaccharides Using Porous Graphitic Carbon Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry. J. Agric. Food Chem. 68, 7800–7808 (2020).
  15. Logtenberg, M. J. et al. Pooled faecal inoculum can predict infant fiber fermentability despite high inter-individual variability of microbiota composition. Bioact. Carbohydrates Diet. Fibre 24, 100235 (2020).
  16. Martens, B. M. J., Schols, H. A., Bruininx, E. & Gerrits, W. J. J. The effects of physical feed properties on gastric emptying in pigs measured with the 13C breath test. Animal 14, 1892–1898 (2020).
  17. Martens, B. M. J., Bruininx, E. M. A. M., Gerrits, W. J. J. & Schols, H. A. The importance of amylase action in the porcine stomach to starch digestion kinetics. Anim. Feed Sci. Technol. 114546 (2020).
  18. Mistry, R. H. et al. Dietary Isomalto/Malto-Polysaccharides Increase Fecal Bulk and Microbial Fermentation in Mice. Mol. Nutr. Food Res. 2000251 (2020).
  19. Mistry, R. H. et al. Long-term β-galacto-oligosaccharides Supplementation Decreases the Development of Obesity and Insulin Resistance in Mice Fed a Western-type Diet. Mol. Nutr. Food Res. 1900922 (2020).
  20. Mujagic, Z., Jonkers, D. M. A. E., Masclee, A. A. M. & Keszthelyi, D. A Key Role for the Small Bowel in Irritable Bowel Syndrome Pathophysiology: Time to Refocus? Clin. Gastroenterol. Hepatol. (2020).
  21. Oerlemans, M. M. P., Akkerman, R., Ferrari, M., Walvoort, M. T. C. & de Vos, P. Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. J. Funct. Foods 104289 (2020).
  22. Ren, C. et al. Lactic acid bacteria secrete toll like receptor 2 stimulating and macrophage immunomodulating bioactive factors. J. Funct. Foods 66, 103783 (2020).
  23. Ren, C. et al. Protective effects of lactic acid bacteria on gut epithelial barrier dysfunction are Toll like receptor 2 and protein kinase C dependent. Food Funct. 11, 1230–1234 (2020).
  24. Smidt, H. the association between breastmilk oligosaccharides and faecal microbiota in healthy breastfed infants at two, six, and twelve weeks of age.
  25. van Trijp, M. P. H. et al. Fermentation Kinetics of Selected Dietary Fibers by Human Small Intestinal Microbiota Depend on the Type of Fiber and Subject. Mol. Nutr. Food Res. 64, 2000455 (2020).